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1. Introduction

In the kinematic analysis of transpression zones, several

previous workers (Sanderson and Marchini, 1984; Fossen

and Tikoff, 1993; Robin and Cruden, 1994; Dutton, 1997;

Jones et al., 1997) have applied continuum models. We

presented a similar model to estimate the amounts of

flattening in ductile shear zones that are physically possible

in natural conditions. The model considers a viscous layer,

simulating the shear zone, sandwiched between two rigid or

deformable blocks. The movement on the blocks induces

flow in the viscous layer. In our analysis we made a balance

of energies associated with the movement of the blocks with

that of the flow in the viscous layer, and calculated the ratio

of bulk movements across and along the shear zone.

Mulchrone (2003) has misconstrued our model, which

probably led him to discover incorrectness in the analysis.

The misconception appears to have crept in from figure 1 of

Mandal et al. (2001) where the boundary walls of the shear

zone are shown as thick lines. We reiterate that the shear

zone of our model is to be considered as bounded by rigid/

deformable plates simulating less deformed rocks that

confine natural high strain zones (cf. Ramsay and Huber,

1987). In our paper we have analyzed the kinematics of the

bounding plates independent of the material flow within the

shear zone. The entity of the plates should not be confused

with that of the material plane within the shear zone rocks

representing the interface with the bounding plates. We

apprehend that Mulchrone has reviewed our analysis with

the wrong notion that the boundary walls represent the

interface of the shear zone rocks, which we never meant and

believe would hardly ever mean to geologists familiar with

natural shear zones! We indeed considered kinematics of the

shear zone interface, but independent of the motion of the

bounding plates as outlined below.

2. Mathematical considerations

Mulchrone (2003) has provided long mathematical

derivations to estimate the energy involved in the flow of

the shear zone rocks, compared the result with our Eq. 2 and

found them to be identical! This is no wonder, because our

Eq. 2 also represents the energy involved in the flow of the

shear zone rocks, which we derived in the same way as

Mulchrone has done. In our paper we compared Eq. 2 with

Eq. A8 that represents the work done for movement of the

bounding plates in order to recognize the effects of length/

thickness ratio on the shear zone flattening. In the following

paragraphs we attempt to show that he has looked at the

analysis giving no effort to understanding the physical basis

of our theoretical model.

Our theoretical model actually relates the strain energy

with the mechanical energy associated with body movement

of the shear zone walls. According to the classical

mechanics, if a body experiences displacement d under a

force F, then the work done (i.e. mechanical energy) is

F £ d. In our case we have taken F as snl, where sn is the

global normal stress in the direction of shear zone normal,
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and l is the length of the shear zone. The balance between

the energy input to the shear zone and the strain energy

involved in the flow of material with the shear zone can be

demonstrated in terms of deformation of a physical model

under a hydraulic press. The energy supplied to the

deforming model is pAd, where d is the relative travel

distance of the hydraulic pistons within which the model is

squeezed, A is the cross-sectional area of the pistons, and p

is the hydraulic pressure that acts normally to the opposite

face of the moving piston. This p is considered to be the global

normal stress in our case. The work done in the movement of

the piston can be balanced with the strain energy associated

with the deformation of the model, assuming that there is no

energy loss by any other means. This simple principle was

applied in developing our theoretical model.

The above discussion also resolves one of his major

points, which states incorrectly our consideration of the

normal stress. We nowhere mention that the normal stress is

considered at the interface of the shear zone walls and the

viscous block. It is quite apparent that the stresses develop at

the interface due to the flow of the viscous material and the

normal stress component to the wall is thus likely to be

heterogeneous, as the flow is heterogeneous. However, it is

not clearly understood how violation of Newton’s third law

is in question. This kind of analysis requires imposing the

condition of dynamic equilibrium, for which we need to

consider all the stress components acting upon the body. In

our case, one face of the wall is subjected to a total force of

snl, and the opposite face of the wall experiences traction of

the flowing viscous matrix. The basic condition that needs to

be satisfied is the equilibrium of all these forces. The

analysis could also be developed by balancing these forces

acting upon the walls. We have, however, utilized an energy

balance merely for obtaining the mathematical derivations

in a simple way. In addition, it may be noted that Mulchrone

has used the equations of Jaeger (1969) giving the normal

stresses along the flattening direction, and determined the

work done in the displacement of the boundaries defining

the viscous block. In Jaeger’s derivations one can find

that the pressure at the ends of the plates is made zero to

obtain the stress components. This specific assumption need

not to be imposed if we develop the relation in terms of

balancing energies associated with the displacement of

walls and the flow of material with the shear zone.

Mulchrone’s (2003) derivation for work-done of the shear

zone boundary (Eq. 18) reveals that our expression (Eq. A8) is

twice his. This difference is due to a difference in physical

considerations. In order to keep conformity with real

geological situations, we have considered that the flow in

shear zones also involves lateral displacement of wall rocks at

both the ends. The overall displacement of the system during

flattening is considered to follow that of pure shear. In order to

clarify this, we take an example of shear zones with

deformable walls. Considering hs ¼ hw, we can test whether

an equality is maintained between Eqs. A2 and A8. In this case

the block will undergo homogeneous deformation and in pure

shear exy in Eq. (2) will be zero and exx ¼ 2eyy. The equation

then gives rise to: Ep ¼ 16lte2
xx. Now, replacing pcos2a ¼

sn ¼ 2hseyy and vb ¼ eyyt, we get an identical expression of

Ep in Eq. A8. To maintain a generality in the analysis we had to

consider the expression of A8 in this way, which does not

disturb the main proposition of our paper.

Mulchrone (2003) has pointed out that there has been

confusion in the use of differential versus deviatoric stress.

This is not a correct claim. In Eq. (A7) we clearly mention

that the bulk normal and shear stress is determined in terms

of a parameter p, where p ¼ ðs1 2 s2Þ=2. There has been

only a printing mistake while describing p in the text. It

would be ‘half the differential stress’.

3. Summary

1. Mulchrone’s analysis is made on physical considerations

different from ours. This difference has led to an

erroneous interpretation of our analysis.

2. The solution given by Mulchrone is similar to the energy

calculation in the flow of viscous blocks presented in our

paper. We actually related this with the energy input to

the system associated with the displacement of walls

under the bulk normal stress.

3. The question of violation of Newton’s third law seems

irrelevant. In this kind of analysis the condition of

equilibrium of all forces acting upon the body is

generally imposed.

4. The expression of p is clearly mentioned in terms of a

mathematical equation. So, there cannot be any con-

fusion between differential and deviatoric stress.
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